backend code

Perfect πŸ”₯ β€” now that you’ve got the backend code, let’s make it enterprise-ready from scratch β†’ deployment β†’ frontend integration β†’ testing.

Here’s the complete DevOps-style production setup β€” like how you’d do it in a real company.


🧭 PHASE 1 β€” PROJECT SETUP


1️⃣ Create project structure

mkdir shipping-backend && cd shipping-backend
mkdir -p app/services
touch app/{main.py,schemas.py,utils.py}
touch app/services/{shiprocket.py,delhivery.py,dtdc.py,bluedart.py}
touch requirements.txt .env README.md

Your structure should look like:

shipping-backend/
β”œβ”€β”€ app/
β”‚   β”œβ”€β”€ main.py
β”‚   β”œβ”€β”€ schemas.py
β”‚   β”œβ”€β”€ utils.py
β”‚   β”œβ”€β”€ services/
β”‚   β”‚   β”œβ”€β”€ shiprocket.py
β”‚   β”‚   β”œβ”€β”€ delhivery.py
β”‚   β”‚   β”œβ”€β”€ dtdc.py
β”‚   β”‚   └── bluedart.py
β”œβ”€β”€ .env
β”œβ”€β”€ requirements.txt
└── README.md

2️⃣ Create a Python virtual environment


3️⃣ Install dependencies


4️⃣ Add environment variables

Edit .env:

πŸ” Store secrets in AWS Secrets Manager or Vault in real environments.


βš™οΈ PHASE 2 β€” BUILD & RUN LOCALLY


5️⃣ Run the FastAPI server

Visit your API: πŸ‘‰ http://127.0.0.1:8000/docsarrow-up-right (Auto Swagger UI)


6️⃣ Test with sample data


7️⃣ Frontend connection (Lovable AI app)

In your frontend, modify the Compare Rates button handler to make an API request like:

βœ… Display data.results dynamically in your Lovable frontend UI.


🧱 PHASE 3 β€” PRODUCTION DEPLOYMENT


8️⃣ Create a production Dockerfile


9️⃣ Build & run Docker locally

Test: πŸ‘‰ http://localhost:8000/docsarrow-up-right


πŸ”Ÿ Push to container registry (example: GitHub or Docker Hub)


☁️ PHASE 4 β€” DEPLOYMENT OPTIONS


🧩 Option 1: Render (free & easy)

  1. Create a new β€œWeb Service”

  2. Connect your GitHub repo

  3. Set environment variables in Render Dashboard

  4. Command:

  5. Deploy and get your API endpoint like πŸ‘‰ https://shipping-api.onrender.com/compare-rates


🧩 Option 2: AWS ECS / EKS (for enterprise)

  • Store image in Amazon ECR

  • Deploy via ECS (Fargate) or EKS (Kubernetes)

  • Expose with an Application Load Balancer (ALB)

  • Use AWS Parameter Store / Secrets Manager for .env variables

  • Enable HTTPS via ACM + Route53


🧠 PHASE 5 β€” MONITORING & LOGGING


Enable FastAPI logging

Add in app/main.py:

For production:

  • Use AWS CloudWatch, Grafana Loki, or ELK stack

  • Set up alerts for errors or API downtime


βœ… PHASE 6 β€” TESTING


Unit testing

Create tests/test_api.py:

Run tests:


πŸ”’ PHASE 7 β€” SECURITY HARDENING


  1. Add CORS middleware in FastAPI:

  2. Always use HTTPS

  3. Rotate API tokens periodically

  4. Use rate limiting (e.g., slowapi)

  5. Set up error monitoring via Sentry


🌍 PHASE 8 β€” FRONTEND INTEGRATION (Lovable)


In your Lovable frontend:

  • Add .env variable for backend URL Example: VITE_API_URL=https://shipping-api.onrender.com

  • Replace your button handler with:

  • Show rates list in a UI card.


🎯 FINAL RESULT

βœ… Fully functional production-grade backend βœ… Integrated securely with frontend βœ… Deployable on any cloud βœ… Tested & Monitored


Would you like me to add GitHub Actions CI/CD (auto deploy backend to Render or AWS on every push)? That’s the next logical step for an enterprise-grade setup.

Last updated